There's alot more in there than just protons, neutrons, and electrons...
Quarks

Three-quark combinations fit in the category of baryons. The best-known baryons are the proton (with two up quarks and one down quark) and the neutron (with two down quarks and one up quark).
Particles that have one quark and one antiquark fit in the category of mesons. For example, the pion, or pi meson, contains an up quark and an anti-down quark.
The mysterious Higgs

The Higgs boson, named after Scottish theorist Peter Higgs, is thought to be associated with a field that endows some particles (such as the weak nuclear force's W and Z bosons) with mass, while leaving the electromagnetic force's photons without mass.
This Higgs field may have played a role at the very beginnings of the universe: Physicists believe that at the highest energies, the electromagnetic and weak nuclear forces were unified, but something led to "electroweak symmetry breaking" as the infant cosmos cooled. That would be why the electromagnetic force and the weak nuclear force are distinct in the current universe. The Large Hadron Collider could shed new light on this mysterious Higgs mechanism.
Why so complicated?
Hadrons and leptons? Baryons and mesons? Fermions and bosons? Sometimes it seems as if particle physicists set up these classifications just to keep outsiders totally confused. But for researchers, these occasionally overlapping categories are useful for figuring out how different types of particles interact with each other.
In a sense, it's as if we've been talking about the game of chess but have gotten only to the point of naming the different pieces on the board: black pieces and white ones, pawns and knights, bishops and rooks, kings and queens. The real meaning of the game comes out when you start studying how the pieces perform and interact.
To delve into the deeper meaning of the Standard Model, you can visit The Particle Adventure at Lawrence Berkeley National Laboratory, "A Subatomic Venture" at CERN, or Particle Physics UK.
Info taken from:
http://www.msnbc.msn.com/id/26320396/ns/technology_and_science-science/t/whats-hadron-take-tour-particle-zoo/
